

Computer Vision Lab Seoul National University

Introduction

Motivation

We tackle catastrophic forgetting problem in the context of classincremental learning for video recognition, which has not been explored actively despite the popularity of continual learning.

We propose a novel continual learning framework, called **Time**-**Channel Distillation (TCD).** Our main claim is that time-wise representation should be distilled with different weights depending on their relevance and uniqueness to target classes and maintained for better utilization in the future stages.

Contribution

- We introduce an efficient **class-incremental learning** technique for action recognition in videos by adopting a simple frame-based feature representation method to store exemplars for the tasks learned in the past.
- Our algorithm estimates **time-channel importances** and **distills** knowledge with the importance weight while encouraging the diversity of the features in each frame for regularization and enhance the performance of our target model.
- The proposed approach presents **remarkable accuracy gains on** the multiple standard action recognition benchmarks with brand**new splits** compared to the existing methods designed in the image domain.

Orthogonality between Frames

Class-Incremental Learning for Action Recognition in Videos

Bohyung Han Jaeyoo Park Minsoo Kang **Computer Vision Lab, Seoul National University**

Our Approach

Notation

• $\{\mathcal{T}_1, \mathcal{T}_2, \cdots, \mathcal{T}_k, \cdots\}$: Sequence of tasks

• \mathcal{T}_k : A set of videos whose labels belong to the predefined classes in \mathcal{C}_k , where $(\mathcal{C}_1\cup\cdots\cup\mathcal{C}_{k-1})\cap\mathcal{C}_k=\emptyset$

• $\mathcal{E}_k \subset (\mathcal{T}_1 \cup \cdots \cup \mathcal{T}_k)$: A small exemplar set for step k

• $\mathcal{T}_k' = \mathcal{T}_k \cup \mathcal{E}_{k-1}$: Training set for step k

• $oldsymbol{F}_k^l$: Feature map for $l^{ ext{th}}$ layer at step $oldsymbol{k}$

Suppress correlation between the representations of individual frames to alleviate feature drift issue

$$\mathcal{L}_{\text{ortho}}^{k} = \sum_{l=1}^{L} \sum_{c=1}^{C_{l}} \| \mathbf{I}_{T} - \mathbf{F'}_{k,:,c}^{l} (\mathbf{F'}_{k,:,c}^{l})^{\top} \|_{F}^{2}$$

Time-Channel Distillation

- After step k = 1, compute **Time-Channel importance mask**
- Approximate $\mathcal{T}_{1:k-1}$ using \mathcal{E}_{k-2} and \mathcal{T}_{k-1}
- Normalize the mask

$$\hat{A}_{k,t,c}^{l} = rac{1}{rac{1}{TC_{l}}\sum}$$

Distillation objective at step k

$$\mathbf{\hat{F}}_{dist}^{k} = \sum_{l=1}^{L} \sum_{t=1}^{T} \sum_{c=1}^{C_{l}} \hat{M}_{k,t,c}^{l} \| \mathbf{F}_{k,t,c}^{l} - \mathbf{F}_{k-1,t,c}^{l} \|_{F}^{2}$$

Training Objective

 $\mathcal{L}_{\text{final}}^{k} = \mathcal{L}_{\text{cls}}^{k} + \alpha \mathcal{L}_{\text{dist}}^{k} + \beta \mathcal{L}_{\text{ortho}}^{k}$

Evaluation Protocol

Benchmark

	UCF 101	HMDB 51	Sth-Sth V2	
Total Classes	101	51	174	
Initial Step Classes	51	26	84	
ded Class(es) per Step	+2, +5, +10	+1, +5	+5, +10	

Metric

- Average Incremental Accuracy
- CNN : Standard Classification
- **NME** : Nearest Mean Exemplars

Experimental Results

 $\boldsymbol{M}_{k,t,c}^{l} = \mathbb{E}_{(x,y)\sim\mathcal{T}_{1:k-1}} \|\nabla_{\boldsymbol{F}_{k-1,t,c}^{l}} \mathcal{L}_{cls}^{k-1}(x,y)\|_{F}^{2}$

 $ilde{M}^l_{k,t,c}$ $\sum_{t=1}^T \sum_{c=1}^{C_l} \tilde{M}_{k,t,c}^l$

Results on UCF 101 & HMDB 51

				•						
	UCF101			HMDB51						
Num. of classes	10×5	stages	5×10	stages	2×25	stages	5×5	stages	1×25	stages
Classifier	CNN	NME	CNN	NME	CNN	NME	CNN	NME	CNN	NME
Fine-tuning	24.97		13.45		5.78		16.82		4.83	
LwFMC	42.14		25.59		11.68		26.82		16.49	
LwM	43.39		26.07		12.08		26.97		16.50	
iCaRL		65.34		64.51		58.73		40.09		33.77
UCIR	74.31	74.09	70.42	70.50	63.22	64.00	44.90	46.53	37.04	37.15
PODNet	73.26	74.37	71.58	73.75	70.28	71.87	44.32	48.78	38.76	46.62
TCD (Ours)	74.89	77.16	73.43	75.35	72.19	74.01	45.34	50.36	40.07	46.66
Oracle (Upper Bound)	84.15	83.37	83.96	83.20	83.82	83.16	55.03	55.98	54.89	55.32

Results on Sth-Sth V2

Num. of classes	10×9 stages		5×18 stages		
Classifier	CNN	NME	CNN	NME	
UCIR	26.84	17.98	20.69	12.57	
PODNet	34.94	27.33	26.95	17.49	
TCD (Ours)	35.78	28.88	29.60	21.63	

Average Accuracy over Seen Classes at each Incremental Step

Rev Coctober 11-17

Ablation Study (UCF 101 with 10 steps)

Objective function	CNN	NME
$\mathcal{L}^k_{ ext{cls}}$ + $\mathcal{L}'^k_{ ext{dist}}$	71.21	73.24
\mathcal{L}_{cls}^{k} + $\mathcal{L}_{dist}^{\prime k}$ + \mathcal{L}_{ortho}^{k}	72.31	74.42
$\mathcal{L}^k_{ ext{cls}}$ + $\mathcal{L}^k_{ ext{dist}}$	72.61	74.81
$\mathcal{L}_{cls}^{k} + \mathcal{L}_{dist}^{k} + \mathcal{L}_{ortho}^{k}$ (Ours)	73.43	75.35