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Beyond Pattern Matching: Deeper Understanding & Scaling

When and How Does Text Readability Emerge?
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The "Emerge Point": A General Phenomenon ° Extends to 114 OpenClip weights

EX p erimenta I SEttI N g * Diverse Architectures (ViT-G, SigLIP, ConvNext, etc., )
* Diverse Pretraining Data (LAION, Webli, DFN, etc., )
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* Text Recognition (RTImg-to-T Recall@1): " symbolic, text-based information, effectively starting to 'read' and understand text ~0.4 ImageNet Acc. threshold.
- Ability to match rendered text image (R) with its raw text (T). oot within images Deeper is Harder: Semantic understanding of rendered text (RTImg-to-l) is even more challenging
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understanding of rendered text's meaning.
* Preference for Rendered Text (Similarity (R, T) > Similarity (I, T))

semantic learning first, with symbolic text understanding developing later through . . . .
_  Tailor training strategies for faster, robust text comprehension.

further refinement. _ _ . _
* Investigate underlying mechanisms of this emergence.

* General Semantic Understanding (ImageNet Zero-shot Accuracy)
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