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• T (Raw Text): Diverse captions (NoCaps).

• R (Rendered-Text Image): Generated via FLUX.1 dev (diffusion).

• Varied parameters: Font, color, background, position.

• I (Natural Image): Corresponding original image.
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TL;DR When and How Does Text Readability Emerge?

Dataset (3,000 Triplets)

Experimental Setting

Robust Emergence Across Training Scales

The "Emerge Point": A General Phenomenon

Deeper Understanding is Harder

Scaling Helps, But Pattern Persists

VLMs learn to read text suddenly after reaching a certain level of 

semantic understanding, not gradually.

Beyond Pattern Matching: Deeper Understanding & Scaling

Conclusion & Future Works

• Observations :

• For all scales, RTImg-to-T (dashed lines) performance 

remains low initially, then sharply increases after around 

200 million samples

• This indicates that a foundational semantic understanding 

precedes the development of text-specific recognition.

• Interestingly, the model's preference for rendered text 

images (dotted lines) also develops later

• Implication : This consistent, scale-invariant emergence 

pattern strongly suggests it's a fundamental learning dynamic in 

these VLMs, not just an artifact of a specific training run.

• Critical Threshold (≈0.4 ImageNet Acc.): Text readability (RTImg-to-T) abruptly 

emerges when general semantic understanding (ImageNet Zero-shot Accuracy) 

reaches a critical threshold of approximately 0.4.

• Below this threshold: Text readability is near random.

• Above this threshold: Text readability rapidly improves.

• General Phenomenon: This "emerge point" is consistently observed across both our 

Datacomp-1B trained models (blue dots) and 114 diverse public OpenCLIP models 

(red dots), indicating it's a general characteristic.

• Significance : A Shift in Capability: This ≈0.4 threshold marks a crucial 'emerge 

point' where VLMs shift from primarily semantic processing to incorporating 

symbolic, text-based information, effectively starting to 'read' and understand text 

within images.

• Implication: This delayed emergence suggests contrastive loss may prioritize general

semantic learning first, with symbolic text understanding developing later through

further refinement.
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Key Takeaways
• Abrupt Emergence: Text readability in VLMs is an emergent capability, not gradually learned.

• Delayed Development: It appears after general semantic understanding, around a consistent 

~0.4 ImageNet Acc. threshold.

• Deeper is Harder: Semantic understanding of rendered text (RTImg-to-I) is even more challenging 

and emerges later, suggest text readability remains superficial.

Future Work
• Tailor training strategies for faster, robust text comprehension.

• Investigate underlying mechanisms of this emergence.

• True semantic understanding (RTImg-to-I, X-lines) is far harder & emerges later than basic text 

recognition (RTImg-to-T, dashed lines).

• Suggests RTImg-to-T might be superficial; RTImg-to-I requires deeper visual-semantic integration.

• Delayed RTImg-to-I Emergence: This delay is likely because contrastive learning prioritizes direct image-

text comparisons over rendered text-image alignment (despite both being visual inputs).

• Larger models (ViT-L/16) improve RTImg-to-I, but the delayed emergence pattern persists.

• Patterns of abrupt and delayed emergence hold across scales.

Key Metrics
• Text Recognition (RTImg-to-T Recall@1):

• Ability to match rendered text image (R) with its raw text (T).

• Deeper Semantic Understanding (RTImg-to-I Recall@1):

• Ability to match rendered text image (R) with the corresponding natural image (I), indicating 

understanding of rendered text's meaning.

• Preference for Rendered Text (Similarity (R, T) > Similarity (I, T))

• General Semantic Understanding (ImageNet Zero-shot Accuracy)

• Extends to 114 OpenClip weights

• Diverse Architectures (ViT-G, SigLIP, ConvNext, etc., )

• Diverse Pretraining Data (LAION, WebLi, DFN, etc., )

• Training Setting

• ViT-B/16

• Datacomp-1B (256M, 640M, 1.28B)

• Main Point : The abrupt emergence of text readability (RTImg-to-T) 

is remarkably consistent across different training data scales.
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